
Alabama Space Grant Consortium

Alabama CubeSat Initiative

Document Classification: Public, Distribution: Unlimited

Model-Based Systems Engineering

University of Alabama in Huntsville – Management Team

Michael Halvorson – ABEX Chief Engineer

MBSE Primer for New Spacecraft Engineers

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

Agenda

2

1. What is MBSE?

2. Architecture Frameworks

3. Process Frameworks

4. Modeling Languages

5. Ontologies

6. Concept Representation: Using Domain Ontologies

7. Summary

Document Classification: Public, Distribution: Unlimited

What is MBSE?

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

Systems Engineering Recap

4

• Every engineer is a Systems Engineer

• All systems have a life cycle, and some systems have multiple

• Requirements are derived from stakeholders
− Specifications are low-level requirements

• All ABEX subsystems must be TRL 6 by PDR/CDR
− TRL 1-5 advancement achieved by development tests

− TRL 5-6 advancement achieved by qualification tests

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

Systems Engineering Recap

5

• Integration is probably the hardest part of Systems Engineering
1. Identify subsystem-specific TPMs, even if it is a few

2. Identify the components that realize those TPMs

3. Work backwards along the integration chain to realize the TPMs
a. Identify Configuration Items

b. Identify Integration Points

4. Develop the Integration Chain schedule

• Verification is, “Did I do the thing right?”

• Validation is, “Did I do the right thing?”
− V&V Methods: Analysis, Inspection, Demonstration, Test.

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

Systems Engineering Recap

6

• TPMs help us compare current performance with desired or expected
performance

• ABEX defines three kinds of TPMs
− Key Performance Parameter (system-wide, 1 if any per subsystem)

− Technical Performance Parameter (most of them)

− Technical Environmental Parameter

• TPM content & methodology is represented by Domain Knowledge Maps
− Verification by Analysis for educational purposes

− Covered much more in MBSE Seminar

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Formal Definition:
− MBSE is the art and science of applying software-based tools to capture

Systems Engineering evidence in a systematic, disciplined way to connect
system relationships, control system configuration, and communicate a
common source of truth in the form of an integrated model to all
stakeholders throughout the life cycle [1]

• What do we hear?
− Software-based tools

− Systematic, disciplined methods

− Communication to stakeholders
 Systems only exist to deliver value to stakeholders

MBSE: A Discipline

7

[1] Larson et al., 2018

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• MBSE doesn’t,
− Do Systems Engineering for you

− Tell you what your system should be

− Tell you what your requirements should be

− Tell you how to perform system integration

• MBSE is not your process, it supports your process

• If you can’t do SE, you can’t do MBSE

• Distinction between MBSE and Document-Based Systems Engineering

What MBSE is Not

8

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• What is a Model?
− “A physical, mathematical, or otherwise logical representation of a

system, entity, phenomenon, or process.” [2]

• What is a good System Model?
− Descriptive and analytical

− Unambiguous semantics

− Integrates information from many technical domain models

• All models need a purpose
− Modeling something for the sake of modeling is a waste of time

All Models are Bad, But Some are Useful

9

[2] DoD 5000.59, 2003

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

1. Architecture Framework
− What kind of descriptions can I use to define my system?

2. Process Framework
− How do those descriptions evolve over time?

− In what order should I create those descriptions?

3. Modeling Language
− In what language (Grammar/Syntax) do I communicate the descriptions?

4. Ontology
− What categories of descriptions exist?

− What are the relationships between the categories?

Four Pillars of MBSE

10

[3] Chesley & Sellers, 2021

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Connections between aspects of complex systems can’t be
done on paper.
− Domains: Physical, Operations, Behavior, Requirements

• Configuration Management: A central source of truth

• Model Integration
− Have multiple analyses? You’ll likely have multiple models

− Could be MATLAB, STK, C++, anything

• It’s about communicating
− Communicate the diagrams or artifacts your stakeholders want

What is the Utility of MBSE?

11

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Something generated from a MBSE model is called an Artifact
− Diagrams, simulations, word documents, spreadsheets, etc.

• Which artifacts can be generated?
− Architecture Framework tells you that

• Which artifacts should be generated at which reviews?
− Process Framework tells you that

• Where do artifacts come from?
− Integrated Systems Model

Model-Based Reviews are the Goal

12

Document Classification: Public, Distribution: Unlimited

Architecture Frameworks

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• The fundamental organization of a system. The “what”
− Relationships to each other

− Relationships to the environment

• Communicated by Architecture Description (AD) elements
− AD = Work Product to communicate an architecture

• Architects define the rules for what the system does

• Designers create solutions using those rules

• Systems Engineers often do both

Architectures & Architecture Descriptions

14

[4] ISO 24765, 2017

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Formal Definitions:

− Architecture: fundamental concepts or properties of a system in its
environment embodied in its elements, relationships, and in the principles
of its design and evolution.

− Architecture Description: Work product used to express an architecture

− Architecture Framework: Conventions, principles, and practices for the
description of architectures established within a specific domain of
application or community of stakeholders

Architectures & Architecture Descriptions

15

[4] ISO 24765, 2017

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• AD elements can be organized into Architecture Frameworks
− Captures the information describing an architecture in one big place

• This can be difficult to create with highly complex systems
− Domain Architectures: Physical, Behavioral, Operations, Requirements

− Process AD elements: System Management, V&V, Manufacturing

− Interface Architectures

− Integration

− Risk Assessment

− Quality Assurance

Architecture Frameworks: Introduction

16

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Formal Definition (again):
− Architecture Framework (AF): Conventions, principles, and practices for the

description of architectures established within a specific domain of
application or community of stakeholders.

• AFs describe a Product Taxonomy
− What products can be made to describe a system?

− These products are Architecture Description elements

− Examples coming with the Unified Architecture Framework

• Summary: AFs describe the products or AD elements that can be
made to describe a system

What is an Architecture Framework?

17

[4] ISO 24765, 2017

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Organize work throughout a life cycle
− Work Products defined in an AF aren’t only for one life cycle stage

• It’s a Management Tool
− These are the things we need to do

• Helps communicate the big picture
− Central source of truth

− Systems Thinking: Purpose, problems, assumptions, views, data,
concepts, conclusions, implications [5]

• Supported by the Ontology: How are the concepts related?

Why Use Architecture Frameworks?

18

[5] Thomas, 2021

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Unified Architecture Framework (UAF)
− Came out in 2020. Culmination of decades of work. [6]

− Version 3 of the Unified Profile for DoDAF and MoDAF (UPDM)
 UPDM was a graphical modeling language, not an AF [7]

• Department of Defense Architecture Framework (DoDAF) [8]

• NATO Architecture Framework (NAF) [9]
− Absorbed British Ministry of Defense Architecture Framework (MoDAF)

• Canada’s (DNDAF), Australia’s (AUSDAF)

• There’s AFs for businesses too
− The Open Group Architecture Framework (TOGAF) [10]

− Used by 60% of Fortune 500 companies [11]

What Architecture Frameworks Exist?

19

[6] UAF, 2020 [7] Hause et al., 2019 [8] DoD, 2021 [9] NATO, 2021 [10] The Open Group, 2021 [11] Kotusev, 2018

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• How the Object Management Group (OMG) describes it:

− The UAF, “…enables the modeling of strategic capabilities, operational
scenarios, services, resources, personnel, security, projects, standards,
measures and requirements, which supports best practices through the
separation of concerns and abstractions…The intent of UAF is to provide a
standard representation for describing enterprise architectures using a
Model Based Systems Engineering (MBSE) approach”

• What do we hear?
− Enables the modeling of systems

− Aspects of system modeling described

− Standardization for communication purposes

UAF Principles: A Product Taxonomy

20

[6] UAF, 2021

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Two Parts:
− Domain Metamodel (DMM)
− Unified Architecture Framework Profile

• The DMM defines the product taxonomy using Domains & Model Kinds
− Domains

 Strategic, Operational, Personnel, Security, etc.

 Notice that domains for DMM aren’t necessarily Physical, Operations, Behavior, Requirements

 Domains can be whatever you need them to be. Tailor them.

− Model Kinds
 Taxonomy, Structure, Processes, Constraints

• When you apply a Model Kind to a Domain, you get an Artifact/Product

How the UAF Works

21

[12] Object Management Group, 2020

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• An AF defines the products that can be created to describe a system

• A Mission Architecture Framework (MAF) defines the products that
should be created to describe a system [13]

• A MAF contains a subset of products defined within an AF that are
defined for a specific purpose
− NASA released the Space Mission Architecture Framework [14]

− Products/Artifacts for Uncrewed, Robotic Missions

AF vs. Mission Architecture Framework

22

[13] Halvorson & Thomas, 2022 [14] NASA-HDBK-1004, 2021

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

MAF Organization: Space Mission AF

23

[14] NASA-HDBK-1005, 2021

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Stakeholders
− External and Internal (participants)

• Viewpoints represented the concerns of Stakeholders

• Views representing subsets of concerns
− Concerns sum to a total list of Stakeholder Concerns

• View Products representing individual Stakeholder Concerns
− The list of concerns for a View is the sum list of concerns for the View Products

under that View

− The same flow applies when going from View to Viewpoint

• ABEX will be adopting the Viewpoint, View, & View Product terminology
− Will be able to communicate well with NASA

MAF Organization: General

24

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

MAF Organization: Creating Your Own

25

Stakeholder 3

Participant 4

Viewpoint 4

View 1 View 2 View 3 View 4 View 5 View 6 View 7 View 8 View 9 View 10

A-1 B-1 C-1 D-1 E-1 F-1 G-1 H-1 I-1 J-1

A-2 B-2 C-2 D-2 E-2 F-2 G-2 H-2 I-2 J-2

A-3 C-3 D-3 E-3 F-3 I-3 J-3

A-4 D-4 E-4 F-4 I-4

Primary Stakeholders: External Actors & Organizations

Secondary Stakeholders: Internal Participants

Stakeholder 1 Stakeholder 2

Participant 3

Views & View Products

Viewpoints

Participant 2Participant 1

Viewpoint 1 Viewpoint 2 Viewpoint 3

[13] Halvorson & Thomas, 2022[13] Halvorson & Thomas, 2022

• Fairly basic, not a lot of bells and whistles

• The ABEX SE team is identifying improvement methods

• Custom MAF needs to fit with custom Process Framework, Ontology

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

Example: Software Generation Using F Prime

26

Viewpoints

Requirements Software Quality Assurance

Views & View Products

Requirements Development Architecture Generation Functional Development Software Assurance

ReqDev-1: Software Requirements

Specification

ArchGen-1: Software Interface Design

Description
FuncDev-1: Software Development Plan SoftAssu-1: Software Assurance Report

ReqDev-2: Software Requirement V&V

Plan

ArchGen-2: Software Subsystem Markup

Language Report

FuncDev-2: Commands, Conditions, and

Impacts Report
SoftAssu-2: Software Reuse Report

ArchGen-3: Cmake Checklist Report FuncDev-3: Software Data Dictionary SoftAssu-3: Model Cohesion Report

ArchGen-4: Software Subsystem

Definition
FuncDev-4: Software Schedule SoftAssu-4: CMMI Adherence Report

FuncDev-5: Software Configuration

Management Plan

SoftAssu-5: Software Acceptance Criteria

and Conditions

FuncDev-6: Version Description Reports SoftAssu-6: Software Test Procedures

FuncDev-7: Software Maintenance Plan SoftAssu-7: Software Test Plan

FuncDev-8: Software Safety Plan SoftAssu-8: Software Test Report

FuncDev-9: Software User's Manual
SoftAssu-9: Record of Continuous

Software Risk

FuncDev-10: Record of Software

Engineering Trade-Off Criteria &

Assessment

[13] Halvorson & Thomas, 2022

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• ABEX is created the ABEX Mission Architecture Framework (AMAF)
− Focus of International Astronautics Congress work, Journal Papers

• The SE team will be preparing the AMAF and Integrated Systems
Model (ISM)

• Will need a corresponding ABEX Mission Process Framework

• Will need a corresponding ABEX Ontology

Tailoring for ABEX

27

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• An Architecture Framework (AF) defines the products or artifacts that
can be created throughout the life of a project
− Not dependent on life cycle

− Encompasses all project aspects

− Can be broken down into View Products, Views, and Viewpoints that
cumulatively represent all stakeholder concerns

• A Mission Architecture Framework (MAF) defines the products or
artifacts that should be created throughout the life of a project
− These are all the things that ABEX has to do to ensure mission success

Architecture Framework Summary

28

Document Classification: Public, Distribution: Unlimited

Process Frameworks

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• An organization of the processes that can exist for a program
− Requirements that can be levied on the program

− Life cycles that could be applied

− Systems Engineering practices and principles

• The same line is drawn here as for an Architecture Framework
− The Process Framework (PF) defines processes that can exist

− The Mission PF (MPF) defines processes that should exist

• Process Frameworks, in general, are much less defined for MBSE than
Architecture Frameworks
− New area of research using MBSE principles

What is a Process Framework?

30

[13] Halvorson & Thomas, 2022

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Life cycle definition for a project
− Stage-gate reviews

− Entry/Exit criteria for reviews

• Philosophy of technical work product maturation
− How are products matured over time?

• Allocation of work products at a specific level of maturity to different
stage-gate reviews
− When and how is a product ready for a review? Who decides?

• Technical process descriptions (V&V, requirements definition)

What’s in a Process Framework?

31

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• NASA NPR 7123.1C: NASA SE Processes and Requirements
− Defines Institutional & Programmatic Requirements

− Requirements for Technical Processes

− Contracted Project Activities

− Life Cycle & Technical Reviews

− Systems Engineering Management Plan

• NASA considers NPR 7123.1C to be a PF
− Specific to Document-Based Systems Engineering (DBSE) practices

− The systems “Vee” Model accomplished through documents

− Covers many aspects required of a PF

Common Descriptions for PFs

32

[15] NPR 7123.1C, 2020

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Some very big names in SE consider SE itself to be a PF [3]
− SE, by definition, includes,

 Requirements structures

 Life cycle organizations

 Integration Processes

• Why might those (7123.1C, SE itself) not be good answers for MBSE?
− DBSE-centric; goal is to produce documents, not make decisions

− Don’t relate to products in terms of MBSE artifacts

− Don’t discuss product maturation terminology in terms of MBSE

− Historical SE is highly document-based.
 PF sounds a lot like a SEMP, 7123.1C includes the SEMP description

Common Descriptions for PFs

33

[3] Chesley & Sellers, 2021

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Appendix F of NPR 7123.1C defines work product maturity terminology
for configuration-controlled and non-configuration-controlled products.
− Non-Configuration-Controlled

 Initial -> Final -> Update

− Configuration-Controlled
 Preliminary -> Baseline -> Approve -> Update

• SMAF Appendix E allocates the Preliminary Master Equipment List
(MEL) to the System Definition Review and later allocates the Final MEL
to the Preliminary Design Review.
− Erroneous mix/match of CC and NCC terminology

PFs and MBSE: The Baseline Problem

34

[15] NPR 7123.1C, 2020

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• If CC or NCC terminology is applied to every Product, what happens?

Every Product becomes two or three Products, and the MAF size triples

PFs and MBSE: The Baseline Problem

35

[14] NASA-HDBK-1005, 2021 [15] NPR 7123.1C, 2020

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Traditional PF organization for document-based reviews may not work
for Model-Based Reviews
− Product maturation philosophy and strategy

− Application of programmatic requirements to AF View Products

• ABEX must create an ABEX Mission Process Framework (AMPF)
− What order should AMAF Products be produced?

− What Products are presented at which reviews?

− We’re working on it

• The combination of AMAF and AMPF structures will enable Model-Based
Reviews

The Goal is Model-Based Reviews

36

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

Process Framework Summary

37

• A Process Framework (PF) is an organization of the processes that can
exist for a program
− Requirements that can be levied on the program

− Life cycles that could be applied

− Systems Engineering practices and principles

− Maturation of products over time

− Allocation of products to stage-gate reviews

• The same line is drawn here as for an Architecture Framework
− The Process Framework (PF) defines processes that can exist

− The Mission PF (MPF) defines processes that should exist

Document Classification: Public, Distribution: Unlimited

Modeling Languages

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Natural Language: A language that has developed and evolved
naturally through use by human beings
− Human speech

− Loosely defined syntax and semantics that varies by geography

• Formal Language: A language designed for use in situations in which
natural language is unsuitable, as for example in mathematics, logic,
or computer programming. The symbols and formulas of such
languages stand in precisely specified syntactic and semantic relations
to one another.
− Machine-readable language

− Strict syntax and semantic structure

Formal Language vs. Natural Language

39

[16] Patrick, 2022

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Syntax: How an expression is structured in order for it to be machine-
readable

• Semantics: what an expression or relation in a formal language means

• The combinations of semantics and syntax in a formal language allow us
to rigorously model user-defined concepts

Formal Language: Syntax and Semantics

40

[16] Patrick, 2022

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

It’s About Avoiding Ambiguity

41

[16] Patrick, 2022

La
n

gu
ag

e
D

ef
in

it
io

n
U

si
n

g
th

e

La
n

gu
ag

e
O

p
er

at
io

n
s

Abstract
Syntax

Model

Things
Being

Modeled

SysML
Semantics

Interpreting the
Language

SysML
Semantics

«
in
te
rp
re
ts
»

«
co
n
tr
o
lle
d
B
y»

Semantics Applied
Automatically to Things
Being Modeled
By Tooling Built Manually

Formal
Semantics

A

B

subset of

A

B

=

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• SysML is an extension of the Unified Modeling Language (UML)

• Four primary elements of a SysML Model
− Structure

− Behavior

− Requirements

− Parametric

• Not going to go too in-depth here, only covering a few diagrams

The Systems Modeling Language

42

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Nine Diagrams:
− Structure

 Block Definition Diagram (bdd, specific to SysML)

 Internal Block Diagram (ibd, specific to SysML)

 Package Diagram (pkg, from UML)

− Behavior
 Activity Diagram (act, from UML)

 Sequence Diagram (sd, from UML)

 State Machine Diagram (stm, from UML)

 Use Case Diagram (uc, from UML)

− Requirements
 Requirements Diagram (req, specific to SysML)

− Parametric
 Parametric Diagram (par, specific to SysML)

Diagrams, Diagrams, Diagrams

43

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

Diagram Frame

44

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Use Blocks to define system structure

Structural Diagram: Block Definition Diagram

45

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

Structural Diagram: Internal Block Diagram

46

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• IBDs show connections, flows, and/or services between parts of
blocks and external references

• IBDs have instances of blocks from the BDD, not blocks themselves
− This is confusing at first

− IBDs do need to correspond to a block in a BDD

• Conveys how the parts of a block must be assembled to create a
valid instance of the block

Structural Diagrams: BDDs and IBDs

47

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Indicates desired system behavior over time; a dynamic view of the
system
− Token Flow = Monopoly pieces moving across a board

− States what mass/data/energy/control a system provides or receives

• Can allocate actions to components using “Swimlanes”

• Can’t show everything
− Doesn’t show a state

− Doesn’t show invocations of the activities starting

Behavior Diagram: Activity Diagram

48

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

Behavior Diagram: Activity Diagram

49

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Define the Diagrams for the system

• Link the diagrams together using relationships/allocations

• Export certain diagrams as artifacts/View Products

• SysML models can be executable
− We can vary options and simulate the results

− Can link SysML models with STK or Matlab

Using SysML

50

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Everyone: Activity Diagrams for integration chains
− These will show up in your Development & Integration

Plans (DIP) and Qualification Plans (QP)

− Very rough version here, not quite correct

− Will update integration chain diagram guidance

• What must be on these?
− TRL advancement tests (2-3, 3-4, 4-5)

− All Product Breakdown Structure items get swimlanes

− Combination of 2+ swimlanes is integration test

− TRL 2-5 in DIP, TRL 5-6 in QP

How Will ABEX Teams Use SysML?

51

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Flight Software: Sequence Diagrams for Operations
− These will show up in your DIPs

− Activity Diagrams don’t show timing or invocations

− Sequence Diagrams show this behavior better

− This example shouldn’t have F Prime or button

• What must be on these?
− Each invoking or responding component

− Execution times

− Operation entry and exit criteria

• All diagrams created using Modelio

How Will ABEX Teams Use SysML?

52

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Activity Diagrams express the order in which actions are performed,
and they can optionally express which structure performs each action

• An “Activity” is a model element within an Activity Diagram
− Activity ≠ Activity Diagram

− An “Action” is also a model element, but doesn’t get its own diagram

− Activities are comprised of actions and other “nodes”

• Activities with fully-defined Activity Diagrams can be nested
− Can create integration chains with nested flows for each test

Guidance on Creating Activity Diagrams

53

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Four Types of Model Elements:
− Action

 Single occurrence of an event

 Multiple types exist, but you only need the basic one

− Activity
 Representation of multiple actions

− Nodes
 Used to start/stop the activity and perform Boolean logic

− Edges
 This is what SysML calls lines. Any line is an edge

 They’re either solid or dashed lines. You’ll use dashed.

What Can Exist Within an Activity Diagram?

54

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Activity Diagrams express the order in which actions are performed,
and they can optionally express which structure performs each action

• An “Activity” is a model element within an Activity Diagram
− Activity ≠ Activity Diagram

− An “Action” is also a model element, but doesn’t get its own diagram

− Activities are comprised of actions and other “nodes”

• Activities with fully-defined Activity Diagrams can be nested
− Can create integration chains with nested flows for each test

Guidance on Creating Activity Diagrams

55

[17] Delligatti, 2014

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• When evaluating if your diagram makes sense, imagine you’re moving
monopoly tokens across a board
− SysML calls these “object tokens” and “control tokens”

• Object tokens represent “things” or material objects
− If a subsystem passes data to another subsystem, we’d use object flow

− For the integration chains, you won’t need object flows/tokens

− Usually solid lines in Activity Diagrams

• Control tokens aren’t physical. Actions might need a control token to
start the action
− Dashed lines with open arrowheads in Activity Diagrams. You’ll use these.

Looking at an Activity Diagram = Playing Monopoly

56

[17] Delligatti, 2014

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Three conditions exist for an action to start:
− The activity that owns the action is currently executing

− A control token arrives on each of the incoming control flows

− A sufficient number of object tokens arrive on each of the incoming object
flows to satisfy the lower multiplicity of the respective input pin

• For your integration chain diagrams, you only care about the first two

When does an Action Start?

57

[17] Delligatti, 2014

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• In your integration chain diagrams, you should only use four types of
model elements, nodes, or edges
− Activity Model Element

− Action Model Element

− Control Flow Edge
 Dashed line with open arrowhead

Guidance on Creating Activity Diagrams

58

− Flow Final Node
 Ends the flow, not the activity

− Activity Final Node
 Ends the entire activity. Only one.

− Initial Node
 Starts Activity

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• You need to make horizontal swimlanes for each Product Breakdown
Structure (PBS) item so it can be represented in the flow

Using Swimlanes

59

• PBS Structure Example

2.1 Flight Model

2.2 Development Model 1

2.3 Development Model 2

2.3.1 DM2, Part 1

2.3.2 DM2, Part 2

2.3.1 could be 1.3.1. The number structure is important, not the numbers

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

Modeling Language Summary

60

• Formal languages are used to communicate without ambiguity
− Syntax defines how an expression is structured

− Semantics defines what a structured expression means

• SysML is used to define the Structure, Behavior, Operations, and
Requirements of ABEX
− We’ll ask for certain deliverables using SysML Diagrams

• Using these language constructs allows us to avoid ambiguity

Document Classification: Public, Distribution: Unlimited

Ontologies

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Formal Definition:
− A set of concepts and categories in a subject area or domain that shows their

properties and the relations between them

• Data relationships are defined by ontologies

• Ontologies are agreements on the usage, not a dictionary

• Can be defined using a variety of tools, but some are better
− Web Ontology Language (OWL) -> Resource Description Framework (RDF)

− SysML -> Extensible Stereotypes

− Excel/PowerPoint -> NxN matrix in a table

What Is An Ontology?

62

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

Ontologies in Information Theory

63

• Ontologies are at the top

• They apply at any level

• Elements
− Classes

− Relationships

− Logical Axioms

• An application of an
ontology can be considered
a taxonomy

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• You’re creating “Ontological Triples”
− Subject, Object, Predicate

Viewpoints “reflect the concerns of” Stakeholders

Basic Ontology Rules

64

Subject ObjectPredicate

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Ontologies can be defined for a program, domain, discipline, etc.
− JPL does Foundation, Discipline, and Application categories

• ABEX can define ontologies for various levels, but where should we?
− Technical (Discipline). This one likely needed.

− Management?

− Systems Engineering?

− Process Framework Ontology?

− Architecture Framework Ontology?

Ontologies at Varied Project Levels

65

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• ABEX is approaching ontologies, AFs, and PFs together

• Defining an Ontology that can be decomposed into a Mission Ontology

• The Mission Ontology relationships define the entities, components,
relationships, and products within the MAF and MPF

• MAF and MPF will be generated from the Mission Ontology

ABEX Systems Engineering Research

66

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• ABEX has defined three Domains with relationship maps that can be
referred to as parts of the overarching ABEX ontology
− Technical Analysis Domain

 Structures, Thermal, C&DH, GN&C, EPS, TT&C, Orbit, Payload,

− Software Development Domain
 Flight Software

− Project & Mission Domain
 Project Management, Systems Engineering

• All of these exist within the full ontology, but they are effectively
relationship maps
− These define relationships that can exist, but don’t have to exist

ABEX Team Ontology Usage

67

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

Technical Analysis Domain Ontology (Table View)

68

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

Software Development Domain Ontology (Table View)

69

• This one is a work in progress based on new information

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

Project & Mission Domain Ontology (Map View)

70

• This one is a work in progress and is a little old

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

Ontology Summary

71

• Ontologies define a set of concepts and categories in a domain and the
relationships between those concepts that can exist

• Mission Ontologies define those concepts and relationships that should
exist

• There are three domains that exist within the larger ABEX mission;
Technical Analysis, Software Development, Project & Mission
− You’ll use the concepts and categories in those domain ontologies to create

Domain Knowledge Maps

Document Classification: Public, Distribution: Unlimited

Concept Representation: Using
Domain Ontologies

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

Expressing Domain Ontologies

73

• Domain Ontologies express categories of entities that exist within a
Domain such as the Technical Analysis Domain (TAD)

• In the TAD, specific examples of general categories can be defined
− Scalar Parameter -> Initial Fastener Stress, Fatigue Life

− Array Parameter -> Possible Radiator Areas

− State -> Hot/Cold Thermal Environment State

− Source -> NASA-STD-5001

− Equation -> GN&C DIP Equation 14

− Modeling Environment Parameter -> ABAQUS Mesh Density

− Modeling Environment Module -> ABAQUS Vibration Analyzer

− Modeling Environment -> ABAQUS, MATLAB, Simulink

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

Domain Knowledge Maps

74

• When instances of the domain ontology relationships are applied to
represent a Technical Performance Measure (TPM) or other concept,
the visual representation is called a Domain Knowledge Map (DKM)

• We will create DKMs for all subsystem TPMs
− Some TPMs will require multiple, nested DKMs to represent cleanly in a plan

or review package

− Don’t have good examples for Modeling Environment Modules yet

• Software will create DKMs for concept representation
− Working on this now, don’t have good examples yet

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

Technical Performance Measurement (TPM) Recap

75

• TPMs: A set of performance measures that are monitored by
comparing the current actual achievement of the parameters with that
anticipated at the current time and on future dates

• Three kinds of TPMs for ABEX:
− Key Performance Parameters (KPP)

− Technical Performance Parameters (TPP)

− Technical Environmental Parameters (TEP)

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Remember your ontological triples

• TPMs are ovals

• Not every relationship on the TAD ontology has to show up

• Every parameter must be either,
− calculated by Equation

− modeled by Modeling Environment Module

− provided by/sourced from Source

Development & Integration Plan Examples

76

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

Technical Analysis Domain Ontology (Table View)

77

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• This is a secondary TPM used to calculate a primary TPM

• Fastener stress is not an array; the TPM is one of those two

• Fastener Stress TPM should show source

Example: Metallic Structure Thermally Induced FoS

78

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• Domain Knowledge Maps express,
− What parameters are used in the calculation of a TPM

− Which equations are used in the calculation of a TPM

− Where parameters or equations are sourced from

− Where TPM target values are sourced from

− Where to start in the calculation of a TPM

− The sequence of calculating a TPM

− What can be changed if a TPM is not within acceptable levels

Domain Knowledge Map Summary

79

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• ABEX uses DKMs to represent TPM calculation concepts and
methodologies
− Based in MBSE-centric modeling languages and ontologies

− Used for both review material and educational onboarding

• Every team is responsible for creating DKMs

• Well-formed DKMs are not easy to create
− Ask if your DKMs look good in Slack channels or DMs

− No really, please do this

− If you don’t do this and they look bad, we’re going to ask you to redo them

Domain Knowledge Map Summary

80

Document Classification: Public, Distribution: Unlimited

Summary

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

• MBSE applies software-based tools in a systematic, disciplined
way to connect system relationships, control system
configuration, and communicate a common source of truth in
the form of an integrated model

• MBSE does not do Systems Engineering for you. It’s a tool

• Four pillars
− Architecture Framework: What work exists?

− Process Framework: How do we mature the work?

− Modeling Language: How do we describe the work?

− Ontology: How is our work related?

Model-Based Systems Engineering Summary

82

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

[1] Larson, W. J., Kirkpatrick, D., Sellers, J. J., Thomas, L. D., & Verma, D. (2018). Applied Space Systems Engineering. CEI.

[2] DoD modeling and Simulation (M&S) Management, DoD Instruction 5000.59, December 2003.

[3] Chesley, Bruce. Sellers, Jerry. Applied Model-Based Systems Engineering. May 2021. Copyright Teaching Science and Technology, Inc. Presentation.

[4] ISO 24765:2017, "Systems and Software Engineering - Vocabulary," International Organization for Standardization, Geneva, Switzerland, 2017.

https://www.iso.org/standard/71952.html

[5] Thomas, L. Dale., Engineering Systems. University of Alabama in Huntsville. 2021.

[6] “Unified Architecture Framework® (UAF®).” Unified Architecture Framework | Object Management Group, https://www.omg.org/uaf/.

[7] Hause, Matthew, Morkevicius, Aurelijus, and Bleakley, Graham. Transitioning UPDM to the UAF. Object Management Group. March 2019.

https://www.omg.org/news/meetings/tc/va-15/special-events/uaf-pdf/2_MH_GB_AM_Transitioning_UPDM_UAF_FD_MH.pdf

[8] “DODAF - DOD Architecture Framework Version 2.02.” DOD Deputy Chief Information Officer, https://dodcio.defense.gov/library/dod-architecture-framework/.

[9] North Atlantic Treaty Organization. “NATO Architecture Framework, Version 4.” NATO, https://www.nato.int/cps/en/natohq/topics_157575.htm.

[10] The Open Group. “The Open Group Architecture Framework | TOGAF” , https://www.opengroup.org/togaf.

[11] Kotusev, Svyatoslav. "TOGAF-based enterprise architecture practice: an exploratory case study." Communications of the Association for Information Systems 43.1 (2018):

20.

[12] Object Management Group. “Unified Architecture Framework (UAF) Domain Metamodel.” Version 1.1. April 2020. https://www.omg.org/spec/UAF/1.1/DMM/PDF

[13] Halvorson, Michael. Thomas, L. Dale. “Architecture Framework Standardization for Satellite Software Generation Using MBSE and F Prime." 2022 IEEE Aerospace

conference. IEEE, 2022.

[14] NASA Office of the Chief Engineer, NASA Technical Handbook. NASA-HDBK-1005, “NASA Space Mission Architecture Framework (SMAF) Handbook for Uncrewed

Space Missions”. https://standards.nasa.gov/standard/nasa/nasa-hdbk-1005-0. Approved 2021-03-11.

Citations

83

https://www.omg.org/uaf/
https://dodcio.defense.gov/library/dod-architecture-framework/
https://www.nato.int/cps/en/natohq/topics_157575.htm
https://www.opengroup.org/togaf
https://www.omg.org/spec/UAF/1.1/DMM/PDF

Introduction to Model-Based Systems Engineering |ABEX Management Team / 84Document Classification: Public, Distribution: Unlimited

[15] NASA Office of the Chief Engineer, NASA Procedural Requirements. NPR 7123.1C, “NASA Systems Engineering Processes and Requirements”.
https://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7123&s=1c. Approved 2020-02-14.

[16] Patrick, Jonathan., Systems Engineering Modeling. University of Alabama in Huntsville. 2022.

[17] Delligatti, L. (2014). SysML distilled: A brief guide to the systems modeling language.

Citations

84

